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Abstract 
 

In this work, explicit design equations to describe 
symmetrical low-pass ladders (SLPL) constructed with 
mixed-lumped and distributed elements are presented.  
It is expected that the formulas introduced in this paper 
will be useful to design microwave broadband 
matching networks and amplifiers for wireless 
communication systems.  It is also hopped that high 
frequency interconnects can be modelled utilizing the 
explicit equations presented in this paper. 
 
1. Introduction 
 

In microwave circuit design, use of mixed lumped 
and distributed elements presents several advantages. 

Mixed element design problem has been 
investigated extensively in the literature [7,9].  
Recently based on a multivariable approach, an 
efficient semi-analytic procedure is proposed by Aksen 
and Yarman [1,2,8,10] to construct some regular 
mixed lumped-distributed structures. 

In this study, two-variable scattering description 
of symmetrical mixed type structures is investigated. 
In particular, for the low-pass symmetrical mixed 
ladder forms shown in Figure 1 explicit design 
equations are obtained. 
 
2. Scattering Description of Symmetrical Mixed 
Element Two-ports 
 

Symmetrical lossless two-ports constructed with 
two kinds of elements may be described in terms of  
scattering parameters Sij(p,λ); i=1,2 where p=σ+jw is 
associated with lumped elements and λ=tanh(pτ) is 
associated with distributed elements. 

Using Belevitch representation the scattering 
parameters of a symmetrical lossless two-port is given 
by, 
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where the two variable polynomials can be expressed 
in the form 

    λΛ=λ H
Tp),p(h   λΛ=λ G

Tp),p(g  

     ( ) 2/n2k 1p),p(f λλ−=λ  
     pT=[1 p p2 …pn] ,  λ=[1 λ λ2 …λn].  (2) 
 In the above formulation np stands for the total 
number of lumped circuit elements, nλ designates the 
total number of unit elements which connects the 
lumped element in the cascade form. The polynomials 
h(p,λ) and g(p,λ) are fully described by the 
connectivity matrices ΛH and ΛG which are formed by 
the polynomial coefficients. 
 For the particular case of low-pass symmetrical 
ladder networks shown in Figure 1(a-c), k is selected 
to be zero in the polynomial f(p,λ).  For this case, the 
generic form of ΛH=[hij] matrix is given by 
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Fig. 1   Some typical symmetrical networks 
a) 3-elements b)5 elements 
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Fig. 1 c  Typical symmetrical network with 9 elements 

 
Table 1   3 element networks 

 
For np=2, nλλ=1 (C-UE-C) 
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For np=2, nλλ=1 (L-UE-L) 
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For np=1, nλλ=2 (UE-C-UE) 
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For np=1, nλλ=2 (UE-L-UE) 
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Referring to Figure 1a-c, descriptive scattering 
parameters of 3 element, 5 element and 9 element 
typical symmetrical sections are given in Table 1, 
Table 2, and Table 3 respectively in terms of the 
connectivity matrix ΛH and ΛG.  Here it should be 
noted that some of the entries of ΛH and ΛG matrices 
can be expressed in terms of an independent set of 
elements in ΛH matrix.  That is, the dependent 
elements are expressed in terms of freely chosen 
coefficients of hij in the corresponding tables.  In this 
way, by means of the free coefficients, ΛH and ΛG 
matrices, and hence the scattering parameters of the 
selected symmetrical network topologies are obtained. 
 Therefore, any design problem or interconnect 
modelling problem reduces to the determination of the 
independently selected elements of the connectivity 
matrix of ΛH. 

 
Table 2  5 element network 

For np=3, nλλ=2 (UE-C-UE-C-UE) 
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3. Application of Explicit Formulas in Design 
Problems 
 Once the circuit topology is selected for the 
design of broadband matching network or microwave 
amplifiers, the designer can immediately determine the 
selected independent parameters to optimize the 
transducer power gain of the system.  In the core of the 
design we propose the following algorithm. 
 
Algorithm:   

Design of symmetrical low-pass ladder network 
constructed with mixed lumped and distributed 
element for broadband matching problem: 

o

o

C1
Z2 C2

Z3 C2
Z2 C1

o

o

Z1 Z1

Free parameters

Free parameters



Step 1: Select the appropriate circuit topology to be 
implemented on MMICs. 
Step 2: Express all the connectivity matrices ΛH=[hij] 
and ΛG=[gij] in terms of the independently chosen 
parameter hkl of the ΛH matrix. 
Step 3: Express the transducer power gain of the 
system in terms of freely chosen parameters hkl. 
Step 4: By means of an optimization package, 
determine the freely chosen parameter to maximize the 
transducer power gain of the frequency band of 
operation. 
Remarks: 
1. For a typical double matching problem TPG as 
given by 
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2. Obviously TPG is non-linear in terms of hkl. 
However, initial given for hkl can be determined as 
described by [4,5,6] 
3. The above algorithm may as well be utilize to model 
interconnects.  In this case the objective function of the 
optimization package must be described in terms of the 
measured scattering parameters of the interconnect 
under consideration. 
 For this application, the objective function ε may 
be written as  

∑
=

Ω−=ε
N

1r
rr11rm11 )j,jw(S)jw(S  

where S11(jwr) designates the measured input 
reflection coefficient of the interconnect over the 
frequencies wr and S11(jwr,jΩr) designates the models 
unit normalized scattering coefficient for p=jwr, λ=jΩr, 
Ωr=tan(wrτ ).  τ is the constant delay length of the unit 
elements which is picked by the designer. 
 

Table 3   9 element network 
For np=4, nλλ=5 (UE-C-UE-C-UE-C-UE-C-UE) 
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4.  Example  
In this example we wish to solve the double 

matching problem depicted in Figure 2. For the given 
load and generator impedances it is desired to design a 
symmetrical equalizer of order 5. For this case, using 
the explicit expressions given in Table 2 the TPG is 
optimized over 0 ≤ w ≤ 1 and free parameters are 
chosen as h10, h21 and h23.  As a result of optimization 
the following form of the descriptive polynomials are 
obtained. 
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Final transducer power gain is depicted in Figure 3 and 
the synthesis result is given in Figure 2. 
 
 
 
 
 

Fig. 2 Double matching problem (Z0=2.8910, 
C1=1.2852, C2=0.0888) 
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Fig. 3 Gain response of the double matching structure 

 
The resulting performance of the matching 

network design with symmetrical mixed lumped-
distributed elements is in close agreement with the 
available solutions in the literature employing only 
lumped elements [1,5]. 
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