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ABSTRACT

The 1-D phase correlation algorithm proposed by Alliney for
translational image registration is extended by including phase
correlations of the two diagonal projections of images to gain
robustness against the wide-band noise. The best M points
from the phase correlation functions of the vertical and
horizontal projections are selected composing M XM
translation candidates. Each candidate translation is assigned a
rate on the basis of support given by the best A points from the
correlation functions of the diagonal projections. Because of
the random distribution of the false translations the true
translation only gathers support thus takes the first place after
the rating computations. A simple cost function, which favors
the true translation in most cases, is offered. Experimental
results with A7 =12 chosen show that the extended algorithm
provides a valuable robustness especially for images of wide-
band spectrum. The 1-D extended algorithm may also replace
the 2-D algorithm when relatively small translations are
expected.

1. INTRODUCTION

Geometrically aligning two digital images containing some
common scene is known as image registration in the image
processing literature. The simplest image registration task
involves accurate and reliable measurement of the relative
displacement between two images when translational difference
exists only. This kind of registration task has been the main
subject in many practical applications such as guiding a missile
to a preselected target by comparing a reference image with a
sequence of images taken by a video camera or measuring the
velocity of a moving imaging system by using two images
acquired within a short and accurate known time interval.
Image processing and computer vision applications based on
image subtraction (e.g. detection of changes in a scene or
automatic inspection of some industrial products) can only be
achieved after the successful registration of the two images to
be compared.

2-D phase correlation shows remarkable performance when
pure planar translations are expected between images. It can
even cope with the images corrupted by noise and subjected to
changes in illumination or in gain thus making itself a favourite
choice for many practical applications [1,2,3]. Phase correlation

has also been popular in the field of motion estimation and
compensation-based video coding for low bit-rate transmission
of video frames [4]. In a relatively recent work [5], it has been
shown that following some proper coordinate transforms in the
Fourier Transform plane, 2-D phase correlation can be used to
register two images not only differing by translation but also by
planar orientation and scale change.

In the 1-D phase correlation algorithm [6], horizontal and
vertical projections of the two images are first computed. A
phase correlation between the vertical projections yields a peak
at the point of the relative horizontal translation. In the same
manner, a phase correlation between the horizontal projections
leads to detection of the relative vertical translation.

When images contain wide-band noise with relatively high
variance or when translations are not small, location of the peak
in a phase correlation function in the 1-D algorithm is usually
not at the correct translation point. In such cases the
conventional 1-D phase correlation algorithm fails since it
simply searches for the peak in a correlation function for a
decision. In spite of the degradation of the correlation function
the correct translation point is still among the points with
relatively high correlation values. In this paper, the
conventional algorithm is extended by phase correlations of the
two diagonal projections of images. Only the best A/ points in
each of the wusual correlation functions are considered
candidates for the horizontal and vertical parts of the true
translation. Each translation formed by one candidate point
from vertical correlation function and one from horizontal
correlation function, is assigned a rate on the basis of support
given (if any) by the best A/ points from the correlation
functions of the diagonal projections. The translation with the
best rate is decided to be the true translation. The diagonal
correlation functions also bear information about the true
translation. Therefore, a confirmation is provided by the
relevant positions (among those with high correlation values) in
the diagonal phase correlation functions.

In the following section the 2-D and 1-D phase correlation
algorithms and their performances are summarized. Section 3
explains the implementation of the extended 1-D algorithm in
detail. Section 4 presents the performance results of the
extended algorithm for noisy images. Finally, a conclusion is
given in Section 5.



2. 2-D AND 1-D PHASE CORRELATIONS
2.1 The Conventional Algorithms

Let fi(x,y)and f,(x,y) denote two images taken at different
times and assume that there is a relative translation between the
image contents, that is
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Most of the information about the relative displacement
between two images is contained in the phase of their cross-
power spectrum. The whitened or normalized cross-power
spectrum G(u,v) is defined as
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where F; and F,are Fourier transforms of f; and f,
respectively, and F’ is the complex conjugate of F;. The
inverse Fourier transform of the G(u,v) yields a delta function
located at (x,,y,) in the spatial domain. Thus relative
translations x, and y, are simply determined by searching for
the position of the peak. Since f; and f, are discrete and do
not vanish at the boundaries of the image frames in practice, the
delta function is replaced by a unit amplitude narrow pulse.

The phase correlation algorithm is insensitive to brightness and
contrast differences between images and copes with the narrow-
band noise since all spatial frequencies contribute to the
correlation function. The algorithm can even succeed in the
presence of high level wide-band noise and perspective
distortions.

Unfortunately the conventional phase correlation algorithm is
based on the use of 2-D Fourier transforms and its real-time
implementation needs costly hardware to overcome the
computational load. In order to reduce the computational
complexity, an algorithm using 1-D Fourier transformations of
the image projections has been proposed [6]. If x and y
projections f, and f, of animage f are defined as
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then the projection slice theorem indicates that
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Let fi,(x) and f,,(x)=f,(x—x,) be the y-projections of
fi(x,y) and f,(x,y) respectively. Their Fourier transforms
satisfies the equation
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and x, can be determined by locating the peak of the 1-D
inverse transform.
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A similar procedure is used to find y,. Because only 1-D
transformations are required, the number of complex operations
is dramatically reduced.

2.2 Performance of the 1-D Algorithm

When the images are multiplied by an appropriate window
function w(x,y) before taking the projections, the 1-D
algorithm provides satisfactory responses for relatively small
translations of the image pair (typically for y, and
xy <0.25N, given NxN images) [6]. The idea behind the
windowing is to reduce the image pixel values near the image
boundaries so the disturbances induced by the window
finiteness of the real-world images become less effective.
Several 2-D window functions monotonically decreasing and
symmetrical with respect to the image center such as
exponential, Gaussian or raised cosine can be applied.
However, the performance of the algorithm also depends on the
type of the window function. Although it seems that the 1-D
algorithm described above can be used instead of the 2-D
algorithm when relatively small translations are expected, its
straightforward implementation leads to the poor results in
practice because of two major reasons:

* The information available in the image f(x,y) is
degraded by the projection.

*  The noise and partial dissimilarities in the contents of the
images both introduce an array of random phase error in
the cross-power spectrum. This results in a random
contribution of a certain amount of energy to the
correlation function that is shared by N locations in the 1-D
algorithm instead of N2 in the 2-D phase correlation.

To achieve robustness against noise and/or reliable registration
performance at larger translations it is essential that more of
image information be used in the computations.

3. EXTENDED 1-D ALGORITHM

In this work, extending the conventional 1-D phase correlation
algorithm with the correlations of the projections along the
directions parallel to the image diagonals is explored in an
attempt to gain robustness especially against the wide-band
noise.

3.1 Windowing Images

The window function used in this work is in the form of
rotationally symmetrical 2-D raised cosine. The 2-D window
coefficients w(x,y) are found using the 1-D curve as follows.
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The projections of the windowed images w(x,y)f,(x,y) are
used in the algorithm. Here, N x N images are assumed.

3.2 Projections

Two new variables, one for the main diagonal (from the top left
to the bottom right) axis s=x+y, and the other for the
secondary diagonal (perpendicular to the main diagonal) axis



t=x-y are introduced. The projections of a digital image
represented by a small matrice given below are taken as
follows.
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When taking the diagonal projections, lines of projections are
combined two by two so that the size of the diagonal projections
reduces to N, thus equals the size of the other projections.

3.3 Implementation

By applying the 1-D phase correlation algorithm to the ¢
projections f,(s) and f,,(s) of the two images the correlation
function
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is obtained. The peak in the correlation function is expected at
sy = xy +y, . Similarly, by applying the algorithm to the s
projections of the two images a correlation peak is expected at
Iy =Xy = ¥ -

After computing the phase correlation functions g, (x), g,(»),
g,(s)and g (¢), the true translation between the two images
can be determined by the following method. From each
correlation function the first A/ points with the highest
correlation values are selected and put on four separate lists in
descending order by the correlation value. Let us denote the
lists by X, ¥, § and 7, respectively. Then, for each possible
translation (x;,y;) from the X and Y lists (of total
M x M combinations) a rate r(i,j) based on the available
support from the S and 7 lists are computed as follows:

1. Do Steps 2-5 for all (x,,y,).
i=12...M and j=12....M

2. Initialise »(i, j) to the largest integer.

3. Do Steps 4-5 for all (s;.¢;), k=12...,A and
1=12,..M

4. if | *y; —si| <2 and |xi —¥; —4|<2, current
translation (x;,y;) is supported. Compute the cost for the
current translation (x;,y;): ¢y =i+ j+2(k+1)

5. if ey <r(i,j), update the rate: r(@, j)=cy

Because of the nearly random distribution of the false
translation combinations, the true translation and possibly a few
false translations in addition gather support in the rating
computations. At the end of the computations, the minimum of
the rates is found. Let »(m.n) be the minimum. This indicates
that the translation (x,.y,) is decided to be the true
translation. A cost function ¢, is needed in order to grade all

translation combinations which gather support from the S and 7
lists so that the best one can be chosen among them. The simple
cost function given in Step 4 is in favor of the translations
located at the top positions on a list. This increases the
probability of assigning a better cost to the true translation.
Positions in the § and T lists give more weight to the suggested
cost function than those in the X and Y lists do, because
diagonal projections contain more image information compared
to the vertical and horizontal projections. However, the
suggested cost function does not guarantee that the true
translation will always take the minimum rate. Other cost
functions having a higher complexity can be investigated to
obtain a better performance, however, the suggested function
gives satisfactory results when M is relatively small.

3.4 Computational Load

The computational load of the extended algorithm is higher
than twice of that of the conventional algorithm since two more
phase correlations are added. Computations increase by the
value of M and by the complexity of the cost function, but in a
typical application the total time required for the algorithm will
be less than triple of that of the conventional algorithm.
Therefore the computational load still remains very small
compared to that of the 2-D algorithm.

4. EXPERIMENTAL RESULTS

In order to compare the performances of the 1-D conventional
algorithm and the extended algorithm some experimental work
was done. A test image of 350 x 350 pixel with 256 grey levels
was used in the experiments. From the test image a reference
image of 256 X 256 pixel, located at the upper-left part, was cut
out. Uniformly distributed zero-mean white noise with a
standard deviation o, was added to the reference image as
shown in Fig. 1. A set of 256 X 256 pixel images were also cut
out from the same test image at different shifts on a grid spaced
by 10 pixels in both directions. For each couple, the noisy
reference image and each of the shifted images in the set, the
extended 1-D algorithm was applied after windowing the
images and taking the projections along the x, y, s and ¢ axes.
The number of candidate points, A =12 was chosen. The
results were recorded on a registration performance map as
shown in Fig. 2. Each cell in the map contains the results of
both algorithms for the couple between which there is a relative
shift specified by its location. A black cell indicates a correct
translation found by the extended algorithm at which the
conventional algorithm failed. Both algorithms were successful
at the translations with a grey cell and failed at those with a
white cell. The registration performance map shown in Fig. 2(a)
indicates that the extended algorithm provides about %100
increase in the translation range in which a successful
registration is obtained when a high noise power is expected in
the images. Here, the standard deviations of the reference
image and the wide-band noise were about the same. Errors of
+1 pixel in the translations determined by the algorithm were
allowed since accuracy at severe noise inevitably reduces.
Another experiment was performed on the same test image at a
low noise power in order to see the capability of the extended
algorithm when images can be taken in well-controllable
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Figure 1. (a) 350 x 350 moon image. (b) The reference image was cut out from (a) then noise with g, =50 was added.
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Figure 2. Registration performance maps: (a) g, =50.

environments. Fig. 2(b) shows that the increase in the
translation range provided by the extended algorithm is
between %25 and %35 for this case.

In order to see the performance of the extended algorithm on
images with a narrow-band spectrum, a heavily blurred version
of the test image was created and used in the experiments in the
same way. The performance of the extended algorithm is no
longer remarkable at a high noise power as shown in Fig. 3(b).
This is due to the contribution of the spatial frequencies in the
upper band occupied by the noise only. If the bandwidth of the
images is known a priori, better results can be obtained by low-
pass filtering in the frequency domain.
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() o, =5.

S. CONCLUSION

A good translational image registration algorithm for real-time
applications is desired to have three main features: a low
computational load, a large translation range in which the
algorithm reliably works and robustness against both wide-band
and narrow-band noise. 2-D phase correlation has a large
computational load and 1-D phase correlation suffers from the
severe wide-band noise due to the insufficient image
information. The extended 1-D phase correlation algorithm
presented in this paper doubles the image information involved
in the computations by the use of diagonal projections. The
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Figure 3. (a) The Reference image cut out from a blurred version of moon image after noise with o, =25 was added
(b) Registration performance map for the image in (a).

experimental results show that the extended algorithm is very
robust against wide-band noise especially for images of wide-
band spectrum. The extended algorithm dramatically
outperforms the conventional 1-D algorithm as the power of
wide-band noise increases. Even for the images containing a
weak noise, the algorithm yields an increased translation range
by making itself preferable to the conventional 1-D algorithm.
With the low computational load and the robustness to the
wide-band noise the extended 1-D algorithm can even be an
advantageous alternative to the 2-D phase correlation algorithm
when relatively small translations are expected.
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