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Abstract: In this study, the authors consider online detection and separation of superimposed events by applying particle filtering.
They observe only a single-channel superimposed signal, which consists of a background signal and one or more event signals in
the discrete-time domain. It is assumed that the signals are statistically independent and can be described by random processes
with known parametric models. The activation and deactivation times of event signals are assumed to be unknown. This problem
can be described as a jump Markov system (JMS) in which all signals are estimated simultaneously. In a JMS, states contain
additional parameters to identify models. However, for superimposed event detection, the authors show that the underlying
JMS-based particle-filtering method can be reduced to a standard Markov chain method without additional parameters.
Numerical experiments using real-world sound processing data demonstrate the effectiveness of their approach.
1 Introduction

Event and change detection using particle filtering have
received increasing attention recently [1–8]. There are
applications in speech and sound processing, intrusion
detection, internet traffic analysis, bio-information processing,
telecommunication, surveillance and more. In this paper, an
online model-based event detection using sequential Monte
Carlo methods (SMC), namely particle filtering [4–6], is
studied. Some example applications are image separation [9],
modelling of non-stationary auto-regressive alpha-stable
processes [10], two-dimensional (2D) particle filter
realisation in Markov Random Field (MRF)-modelled images
[11] and astrophysical source separation [12].

In the problem setting, it is assumed that the stochastic models
of the background and the event processes are known. The
activation times of the event processes are unknown and the
events are superimposed on a background process. The
background and event processes can be modelled as auto-
regressive (AR) processes, respectively. The AR-process
model is widely used in speech and audio processing [10, 13,
14]. However, because of the inherent use of SMC methods, it
should be pointed out that the methodology proposed is
applicable for signals which have other parametric models. An
important feature of the proposed method is that only single-
channel data containing background and the event signals are
assumed to be observed. The task of the proposed approach is
to estimate the hidden background and event processes and to
detect the event activation–deactivation times. In our previous
work [1], a framework for superimposed event detection is
introduced based on SMC methods, where the applicability is
shown by synthetic data-based experiments.

In this paper, we generalise this framework and show that
the problem can be modelled as a jump Markov system
(JMS) [15–18]. JMSs can be regarded as a generalisation of
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Hidden Markov Models (HMMs). JMSs introduce an
additional model identification parameter represented by a
discrete random variable. This additional parameter extends
the state space by one. However, we show that the
superimposed event detection problem can be transformed to
a standard Markov Chain representation with state switch
probabilities. As a result, there is no need for additional
model identification parameters. This reduces the space and
computational requirements of the particle filtering method.
The novelty of our approach is to combine JMS as in [18]
and particle filtering for superimposed event detection and to
exploit the properties, which are specific to this type of problem.

We compare the proposed method to a change point detection
method [2], which can be regarded as a simple event detection
method. Change point detection determines the time point
where the estimated states undergo a switch from the current
model to another possible model [3]. In [2], a distinct particle
filter is implemented for each model in parallel. Change point
detection is then realised by computing logarithmic
Likelihood ratios (LLR) for each model, using estimated
states. In contrast, the proposed approach only uses a single
filter which is computationally more efficient. Besides
calculating the LLR, we also estimate the event probability
using the posterior probability density approximation. In
addition, our approach provides a solution to the online
source separation problem [9, 19, 20] provided that good
models of the background and the event signals are available.

We introduce experiments for superimposed event detection
containing real audio signals and their superpositions.

2 Framework for superimposed event
detection

The framework we consider is a generalisation of the
framework presented in [1]. The background signal,
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denoted by bt, is superimposed by K event signals, denoted
by z(1)

t , . . . , z(K)
t . All signals are assumed to be mutually

independent. The background signal as well as the event
signals are not observed directly. The only observation
available is based on the superposition of the signals. We
assume that the background signal as well as the event
signals can be represented by stochastic models

bt+1 = fb(bt, vt), z(i)
t+1 = fz(i) (z(i)

t , m(i)
t ), i [ {1, . . . , K}

(1)

where vt and m(i)
t are independent random variables. The

corresponding transition densities are denoted by

p(bt+1|bt) and p(z(i)
t+1|z

(i)
t ), i [ {1, . . . , K} (2)

The event signals may occur in parallel, each with different
start and stop times. As a result, each event signal z(i)

t is
assumed to be only present for sometime window

T (i)
E = [t(i)

0 , t(i)
1 ] (3)

The superposition of the signals yields a compound signal st

st = bt +
∑K

i=1

a(i)
t z(i)

t , a(i)
t = 1, t [ T (i)

E

0, else

{
(4)

As the observation, denoted by the scalar yt, is based only on
this superposition, it can be written as a function of st

yt = g(st, wt) (5)

where wt is a random variable, independent of vt and m(i)
t . The

superpositional signal st contains all the information about the
hidden states. The event switch parameters a(i)

t are random
variables obeying a stationary, discrete and finite first-order
Markov chain taking values in {0, 1}. The transition
probabilities can be denoted by

P(i)
m,n = P(a(i)

t+1 = m|a(i)
t = n), m, n [ {0, 1} (6)

The task is to detect the event, that is,

1. detect the presence of superpositional event signals z(i)
t ,

and
2. estimate the event signals z(i)

t and the background signal bt.

It is assumed that the state transition models of the
background signal as well as the event signals are known.

According to the JMS methodology found in [18], the
following state vector xt can be used

xt = (bt, z(1)
t , . . . , z(K)

t , a(1)
t , . . . , a(K)

t ) (7)

However, the special JMS structure of the superimposed
event detection problem allows the reduction to a standard
Markov chain by discarding the model identification
parameters a(i)

t and modifying the event state transition
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density p(z(i)
t+1|z

(i)
t ) � p̃(z(i)

t+1|z
(i)
t ) as follows

p̃(z(i)
t+1|z

(i)
t )

= d[z(i)
t ](P(i)

0,0d(z(i)
t+1) + P(i)

1,0p(z(i)
t+1|z

(i)
t ))

+ (1 − d[z(i)
t ])(P(i)

0,1d(z(i)
t+1) + P(i)

1,1p(z(i)
t+1|z

(i)
t ))

(8)

where d(.) is the Dirac substitution and d[.] is the Kronecker
delta defined by

d[x] = 1, x = 0
0, else

{
(9)

The Dirac substitution d(z(i)
t+1) produces exact zeros as ‘no-

event’ samples. In this way, the information about the model,
that is, whether the state describing an event is present or not,
can be directly determined from the corresponding state vector
component. Therefore there is no need for the parameters a(i)

t .
As a result, the dimension of the state vector decreases from
2 K + 1 to K + 1. The state vector is then given by

xt = (bt, z(1)
t , . . . , z(K)

t ) (10)

From the assumption about the statistical independence of the
background signal and the event signal follows for the state
transition density

p(xt+1|xt) = p(bt+1, z(1)
t+1, . . . , z(K)

t+1|bt, z(1)
t , . . . , z(K)

t ) (11)

= p(bt+1|bt)
∏K
i=1

p̃(z(i)
t+1|z

(i)
t ) (12)

where p̃(z(i)
t+1|z

(i)
t ) is the modified conditional density in (8).

According to sequential importance resampling (SIR) [4]
method for particle filtering, the particle positions are
sampled from an importance density

xn,t+1 � p(xt+1|xt, y1:t+1) (13)

at each time step t. The unnormalised weights vn,t+1 are
determined by

vn,t+1 = vn,t

p(yt+1|xn,t+1)p(xn,t+1|xn,t)

p(xn,t+1|xn,t, y1:t+1)
(14)

Normalised weights ṽn,t+1 are defined by

ṽn,t+1 =
vn,t+1

S
N
n−1vn,t+1

(15)

2.1 Event detection

We introduce an event indicator It, which determines the
presence of a new event occurring at time t. The event
indicator is calculated by evaluating the event probability
from the approximation S

N
n=1ṽn,td(xt − xn,t) of the posterior

density p(xt|yt), where ṽn,t is normalised importance weight
and n is particle number. Particles representing the posterior
can be divided into K + 1 groups consisting of one ‘no
event’ class and K ‘event’ classes for each event signal z(i)

t .
The detections are made by checking each event state z(i)

t . If
z(i)

t = 0, this means there is no event. If it is different from
zero, then there must be an additive signal. At time index t,
663
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the event probability P(i)
Et for event z(i) is then determined by

P(i)
Et =

∑N

n=1

(1 − d[z(i)
n,t]) · ṽn,t (16)

The event indicator I (i)
t for event z(i) is defined by

I (i)
t = 0, P(i)

Et ,
1

2
1, else

⎧⎨
⎩ (17)

This means, an event is declared ‘on’ with I (i)
t = 1 iff the

event probability is greater than 0.5, otherwise the event is
declared ‘off’ with I (i)

t = 0.

2.2 Signal estimation

The separation of the background signal and the event signals,
respectively, is done by using the posterior probability density
function (PDF) approximation. After each filter step, we
simply calculate the corresponding expectations using
the particle set. The estimated background signal b̂t is
determined by

b̂t = E[bt] =
∑N

n=1

bn,t · ṽn,t (18)

Similarly, the estimated event signal ẑ(i)
t is determined by

ẑ(i)
t = E[z(i)

t ] =
∑N

n=1

z(i)
n,t · ṽn,t (19)

In the literature, multi-channel source separation by particle
filtering can be found in [9]. In contrast, the technique
presented in this paper can achieve separation from a
single-channel observation by exploiting the knowledge
about the parametric models of the background and event
signals.

2.3 Possible applications

The proposed framework is applicable wherever two or more
signals are combined into one single signal and the
corresponding models are known or can be trained. As an
example, several audio signals are superimposed and the
task is to detect whether a certain audio signal is present. In
another example, in image processing, several textures can
be superimposed, for example, background and smoke, and
the task is to detect the smoke.

3 Experiments

We present experiments using audio signals involving the
detection of audio (including speech) events and the
separation of corresponding signals. The event signals are
664
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superimposed on a background audio signal. In this
experiment, we use ‘Flute’ and ‘Pad’ signals as background
signals. The signals ‘Piano’, ‘Speech’ and ‘Trumpet-Wah’
are considered as event signals. The speech signal is
generated by the spoken word ‘tram’. All combinations
yield six different superimposed signals.

Detection error rates (false-positive and false-negative
alarms) as well as signal estimation errors for both the
estimated background and event signals are determined.
The measurements are taken at three different observation
noise variances s2

y . At each setting, the filter run is
independently repeated 50 times and the results are averaged.

In the following, the implementation of audio event
detection based on the proposed framework is described.
The observation yt is modelled as a superposition of the
hidden states

yt = bt + zt + vt (20)

where vt is an i.i.d. normal random variable. Thus, the 2D
hidden state is determined by

xt = (bt, zt) (21)

The state transitions of both the background and the event
processes are modelled by an AR(M) process with additive
normal distributed noise. Therefore the according
distributions are conditional on M previous states

p(bn,t+1|bn,1:t) = p(bn,t+1|bn,t−M :t)

p(zn,t+1|zn,1:t) = p(zn,t+1|zn,t−M :t)
(22)

where n is the sample number and N (.) represents a normal
PDF of an i.i.d. random variable. The AR-coefficients bi, zi

are trained from corresponding clean signals using the
linear least squares method [21]. The AR-process order is
chosen to be M ¼ 60. Table 1 shows the variances of the
AR(60) representations of corresponding signals.

We assume equal model switching probabilities
P0,1 ¼ P1,0 ¼ 1024. This means that a switch of the model
(e.g. event ‘off ’ � ‘on’) is very unlikely. On the other
hand, it is very likely to keep the previous state as the
current state (e.g. event ‘off’), which is reasonable for such
signals with a great number of samples.

The observation model PDF is assumed to be the Gaussian
N (0, s2

y ). In this particular case with Gaussian observation
and transition PDFs and a linear observation model (20), an
optimal importance density [4] given by

p(xt+1|xt, yt+1) = p(bt+1, zt+1|bt, zt, yt+1) (23)

can be determined from the ML-estimation of the parameters
bt and zt, which exploits the information about the current
observation. This has the advantage that the same filter
performance can be achieved with a smaller number of
samples.
Table 1 Error variances of corresponding AR(60) process models, determined from the prediction errors on clean signals

Flute (F ), dB Pad (P), dB Piano (Pi), dB Trumpet-Wah (Tr), dB Speech (Sp), dB

PSNR 62.97 49.35 56.29 53.7 35.8

First two signals ‘Flute’ (F) and ‘Pad’ (P) are used as background signals, whereas the last three signals ‘Piano’ (Pi), ‘Trumpet-Wah’ (Tr) and

‘Speech’ (Sp) are used as event signals
IET Signal Process., 2011, Vol. 5, Iss. 7, pp. 662–668
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For the case of no event, the optimal importance density for
the background signal is deduced from maximising the
following term

�bn,t+1 = arg max
b′

n,t+1

N (yt+1 − b′n,t+1, s2
y)N (b̃n,t+1 − b′

n,t+1, s2
b)

(24)

where b̃n,t+1 = S
M
j bjbn,t−M+j. The term (24) is maximal for

�bn,t+1 =
s−2

y yt+1 + s−2
b b̃n,t+1

s−2
y + s−2

b

(25)

The corresponding variance s2
�b of �bn,t+1 is

s2
�b = 1

s−2
y + s−2

b

(26)
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In case event signals are present, we consider only one single
event signal for simplicity. The generalisation to many event
signals is straightforward. The following Likelihood has to be
maximised by solving for �bn,t+1 and �zn,t+1 simultaneously

(�bn,t+1,�zn,t+1)= arg max
(b′

n,t+1
,z′

n,t+1
)
{N (yt+1 −b′

n,t+1 − z′n,t+1,s2
y)

·N (b̃n,t+1 −b′
n,t+1,s2

b) · N (z̃n,t+1 − z′n,t+1,s2
z )}

(27)

where z̃n,t+1 = S
M
j zjzn,t−M+j. The solution for (�bn,t+1, �zn,t+1)

is given by

�bn,t+1

�zn,t+1

( )
= A

s−2
y yt+1 + s−2

b b̃n,t+1

s−2
y yt+1 + s−2

z z̃n,t+1

( )
(28)
Fig. 1 Typical estimation results: the observed signal (top of each window), true bt and estimated b̂t background signals (middle of each
window) and true zt and estimated ẑt event signals (bottom of each window)

Bar chart (very bottom of each window) represents the event indicator parameter It defined in (17). These graphs show that the events are always clearly detected,
starting from sample no. 500
665
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where

A =
s−2

y + s−2
b s−2

y

s−2
y s−2

y + s−2
z

( )−1

(29)

The corresponding covariance matrix is C ¼ AA21AT ¼ A.
The utilised importance distribution for the ‘event off’ case
is specified by

p0(xn,t+1|xn,t, yn,t) = N (�bn,t+1, s2
�b)d(zn,t) (30)

and for the ‘event on’ case

p1(xn,t+1|xn,t, yn,t) = N ((�bn,t+1, �zn,t+1)`, C) (31)

Importance sampling is done by using a uniformly distributed
discrete random variable un,t � U({0, 1}), deciding whether
the event is ‘on’ or ‘off’

p(xn,t+1|xn,t, yn,t) = d[un,t]p1(xn,t+1|xn,t, yn,t)

+ (1 − d[un,t])p0(xn,t+1|xn,t, yn,t) (32)

In order to compare the proposed method with the parallel
filter approach using the logarithmic Likelihood ratio (LLR)
presented in [2], the sum of LLRs are determined from the
state estimates in two parallel filter runs. The first run
corresponds to the ‘event off’ model, yielding states x(a=0)

t .
The second filter run corresponds to the ‘event on’ model,
which yields the states x(a=1)

t .
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The LLR is defined by

SL
t =

∑L

i=t

log
p(yi|x̂

(ai=1)
i )

p(yi|x̂
(ai=0)
i )

( )
(33)

where L is a positive integer and p(yi|x̂
ai
i ) is the Likelihood.

The event is declared ‘on’ for

SL
t . tLLR (34)

otherwise it is declared ‘off’. The threshold tLLR must be
determined a priori for each case. The two filters are run
with N/2 particles each, so that the computational expense
is comparable to the proposed single-filter approach with N
particles.

Results of the instrumental and natural sound mixing
experiments with one background and one event signal are
shown below. All audio samples are 16-bit wide and
sampled at 44.1 kHz. For convenience, the sample value
range is scaled to [21, 1]. All experiments are done using
audio data containing 1000 samples. The event signal is
always activated from sample number 500 and lasts for 500
samples. In Fig. 1, typical detection and signal estimation
results are shown for all combinations of the background
signals ‘Flute’ and ‘Pad’ with the event signals ‘Piano’,
‘Speech’ and ‘Trumpet-Wah’. Corresponding signal
estimation error variances as well as false-positive and
false-negative event detection probabilities at various
observation noise levels and a sample count of N ¼ 100 are
shown in Tables 2 and 3.
Table 2 Superposition of background signal Flute with event signals Piano, Speech and Trumpet-Wah: estimation

Event signal sy MSE (b̂t ) (PSNR, dB) MSE (ẑ t ) (PSNR, dB) e+ e2

Pi 5 × 1024 5.5 × 1024 (39.2 + 2.1) 5.5 × 1024 (39.2 + 2.1) 4.0 × 1025 + 2.0 × 1024 2.0 × 1022 + 5.0 × 1023

1 × 1023 5.3 × 1024 (39.2 + 1.8) 5.3 × 1024 (39.2 + 1.8) 1.0 × 1024 + 3.0 × 1024 2.0 × 1022 + 1.0 × 1023

2 × 1023 6.7 × 1024 (38.6 + 2.6) 6.7 × 1024 (38.6 + 2.6) 1.0 × 1024 + 3.5 × 1024 2.0 × 1022 + 1.0 × 1022

Sp 5 × 1024 2.3 × 1024 (42.9 + 2.0) 2.3 × 1024 (42.9 + 2.0) 0.0+ 0.0 9.0 × 1023 + 2.0 × 1023

1 × 1023 2.3 × 1024 (42.7 + 1.7) 2.3 × 1024 (42.7 + 1.7) 2.0 × 1024 + 6.0 × 1024 5.0 × 1023 + 3.0 × 10212

2 × 1023 2.5 × 1024 (42.7 + 2.4) 2.5 × 1024 (42.7 + 2.4) 1.0 × 1024 + 3.0 × 1024 5.0 × 1023 + 7.0 × 10212

Tr 5 × 1024 7.7 × 1024 (37.8 + 2.3) 7.7 × 1024 (37.8 + 2.3) 2.0 × 1022 + 6.0 × 1022 3.0 × 1022 + 1.0 × 1022

1 × 1023 6.5 × 1024 (38.3 + 1.8) 6.5 × 1024 (38.3 + 1.8) 3.4 × 1024 + 2.0 × 1023 2.0 × 1022 + 1.0 × 1022

2 × 1023 4.7 × 1024 (39.7 + 1.8) 4.7 × 1024 (39.7 + 1.8) 2.0 × 1024 + 6.0 × 1024 2.0 × 1023 + 5.0 × 1023

MSE’s and event detection false positive e+ and false negative e2 alarm probabilities for several observation noise variances sy
2

and N ¼ 100

Table 3 Superposition of background signal Pad with event signals Piano, Speech and Trumpet-Wah: estimation

Event signal sy MSE (b̂t) (PSNR, dB) MSE (ẑt) (PSNR, dB) e+ e2

Pi 5 × 1024 8.8 × 1023 (27.2 + 1.9) 8.8 × 1023 (27.2 + 1.9) 2.0 × 1025 + 1.4 × 1024 5.0 · 10−2 + 4.0 · 10−2

1 × 1023 8.5 × 1023 (27.5 + 2.1) 8.5 × 1023 (27.5 + 2.1) 0.0+ 0.0 6.0 × 1022 + 3.0 × 1022

2 × 1023 8.2 × 1023 (27.2 + 1.5) 8.2 × 1023 (27.2 + 1.5) 1.0 × 1022 + 6.0 × 1022 1.0 × 1021 + 4.0 × 1022

Sp 5 × 1024 8.6 × 1024 (36.7 + 0.8) 8.6 × 1024 (36.7 + 0.8) 2.0 × 1025 + 2.0 × 1024 5.0 × 1022 + 3.0 × 10212

1 × 1023 8.6 × 1024 (36.7 + 0.7) 8.6 × 1024 (36.7 + 0.7) 0.0+ 0.0 5.0 × 1023 + 3.0 × 10212

2 × 1023 8.6 × 1024 (36.8 + 0.9) 8.6 × 1024 (36.8 + 0.9) 2.0 × 1025 + 1.4 × 1024 5.0 × 1023 + 2.0 × 1024

Tr 5 × 1024 6.0 × 1023 (30.5 + 3.4) 6.0 × 1023 (30.5 + 3.4) 1.0 × 1022 + 6.0 × 1022 4.0 × 1022 + 3.0 × 1022

1 × 1023 4.3 × 1023 (31.1 + 3.2) 4.3 × 1023 (31.1 + 3.2) 2.0 × 1022 + 8.0 × 1022 5.0 × 1022 + 4.0 × 1022

2 × 1023 1.0 × 1022 (29.3 + 5.2) 1.0 × 1022 (29.3 + 5.2) 0.0+ 0.0 1.5 × 1021 + 1.0 × 1021

MSE’s and event detection false positive e+ and false negative e2 alarm probabilities for several observation noise variances sy
2 and

N ¼ 100
IET Signal Process., 2011, Vol. 5, Iss. 7, pp. 662–668
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Table 4 LLR-based parallel filter approach compared with the proposed approach

Signal Mean PSNR, dB LLR e+ LLR e2 tLLR

Parallel filter approach

F + Pi 28.2 + 2.0 2.0 × 1024 + 1.0 × 1023 1.0 × 1021 + 8.0 × 1024 20

F + Sp 41.2 + 1.7 5.0 × 1024 + 0.0 × 1020 5.0 × 1022 + 0.0 × 1020 20

F + Tr 38.1 + 1.8 0.0+ 0.0 1.5 × 1022 + 1.0 × 1022 3

P + Pi 26.6 + 0.1 1.5 × 1021 + 4.0 × 1022 1.4 × 1021 + 4.0 × 1022 0.2

P + Sp 36.0 + 0.7 2.0 × 1022 + 1.6 × 1022 1.1 × 1021 + 3.0 × 1022 0.7

P + Tr 31.7 +++++ 0.7 1.4 × 1021 + 4.0 × 1022 2.7 × 1021 + 4.0 × 1022 0.25

Proposed approach

F + Pi 39.3 +++++ 2.5 0.0 +++++ 0.0 1.6 3 1022 +++++ 2.0 3 1023 20

F + Sp 42.9 +++++ 2.0 0.0 +++++ 0.0 6.0 3 1023 +++++ 4.0 3 1024 20

F + Tr 39.4 +++++ 1.3 0.0+ 0.0 0.0 +++++ 0.0 20

P + Pi 27.4 +++++ 1.2 0.0 +++++ 0.0 7.0 3 1022 +++++ 3.0 3 1022 0.5

P + Sp 36.6 +++++ 0.8 3.0 3 1023 +++++ 5.0 3 1023 9.0 3 1023 +++++ 4.0 3 1023 1

P + Tr 30.8 + 2.9 6.0 3 1024 +++++ 4.0 3 1023 8.0 3 1022 +++++ 3.0 3 1022 0.5

Better results are highlighted in boldface. In both approaches the LLRs are used as detection indicators. The results are achieved with a

total number of N ¼ 100 particles and an observation noise with sy ¼ 5 × 1024. The LLR-based filter pair is run with 2 × 50 particles
In Table 4, the proposed method is compared to the parallel
filter approach. In nearly all parts of the experiments, the
proposed approach yields improved results over the parallel
filter solution, in both the detection accuracy and estimation
accuracy. The main reason for this overall improvement is
that in the proposed approach, only samples that match the
current model best survive the resampling process.
Therefore the sample history contains a higher density of
‘model-conform’ samples than in the parallel filter method.
This leads to a more effective approximation of the
posterior density in general.

4 Conclusions

The proposed framework presents event detection using
particle filtering as a JMS. In the problem setting, a
background signal and one or more superpositional event
signals yield the observed single-channel signal. In other
words, the observed signal is the result of the superposition
of all signals. The event signals are only present for some
time frames, independently of each other. The startand stop
times of the events are unknown a priori. It is assumed that
all signals are mutually statistically independent and that
parametric models are available to represent the signals
stochastically.

It is shown that the special structure of the problem at
hand enables reduction of the JMS to a standard Markov
chain system by transforming the event state transition
densities. In this way, the state space dimension is
decreased by the number of the recognised event signals,
which leads to increased space and computational
efficiency.

The proposed method is compared with the state-of-the-art
change point detection method using one distinct filter in
parallel for each possible background–event signal
combination and LLR measures. Compared with the
parallel filter approach, the proposed approach yields
improved results, both in signal estimation accuracy and
detection accuracy. Instead of the requirement of a distinct
filter run for each possible background–event signal
combination, the proposed approach only requires one
single-particle filter run, enabling a simpler implementation
and less overhead.
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