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ABSTRACT

A new denoising algorithm based on orthogonal projections onto the
epigraph set of a convex cost function is presented. In this algorithm,
the dimension of the minimization problem is lifted by one and fea-
sibility sets corresponding to the cost function using the epigraph
concept are defined. As the utilized cost function is a convex func-
tion in RN , the corresponding epigraph set is also a convex set in
RN+1. The denoising algorithm starts with an arbitrary initial esti-
mate in RN+1. At each step of the iterative denoising, an orthogonal
projection is performed onto one of the constraint sets associated
with the cost function in a sequential manner. The method provides
globally optimal solutions for total-variation, `1, `2, and entropic
cost functions.1

Index Terms— Epigraph of a cost function, denoising, Projec-
tion onto convex sets, total variation

1. INTRODUCTION

A new denoising algorithm based on orthogonal Projections onto
the Epigraph Set of a Convex cost function (PESC) is introduced.
In Bregman’s standard POCS approach [1, 2], the algorithm con-
verges to the intersection of convex constraint sets. In this article, it
is shown that it is possible to use a convex cost function in a POCS
based framework using the epigraph set and the new framework is
used in denoising [3–7].

In standard POCS approach, the goal is simply to find a vec-
tor, which is in the intersection of convex constraint sets [2, 8–29].
In each step of the iterative algorithm an orthogonal projection is
performed onto one of the convex sets. Bregman showed that suc-
cessive orthogonal projections converge to a vector, which is in the
intersection of all the convex sets. If the sets do not intersect, it-
erates oscillate between members of the sets [30, 31]. Since, there
is no need to compute the Bregman distance in standard POCS, it
found applications in many practical problems.

In PESC approach, the dimension of the signal reconstruction
or restoration problem is lifted by one and sets corresponding to a
given convex cost function are defined. This approach is graphi-
cally illustrated in Fig.1. If the cost function is a convex function in
RN , the corresponding epigraph set is also a convex set in RN+1.
As a result, the convex minimization problem is reduced to finding
the [w∗, f(w∗)] vector of the epigraph set corresponding to the cost
function as shown in Fig. 1. As in standard POCS approach, the new
iterative optimization method starts with an arbitrary initial estimate
in RN+1 and an orthogonal projection is performed onto one of the
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constraint sets. The resulting vector is then projected onto the epi-
graph set. This process is continued in a sequential manner at each
step of the optimization problem. This method provides globally op-
timal solutions for convex cost functions such as total-variation [32],
filtered variation [4], `1 [33], and entropic function [10]. The itera-
tion process is shown in Fig. 1. Regardless of the initial value w0,
iterates converge to [w∗, f(w∗)] pair as shown in Fig. 1.

The article is organized as follows. In Section 2, the epigraph
of a convex cost function is defined and the convex minimization
method based on the PESC approach is introduced. In Section 3,
the new denoising method is presented. The new approach does not
require a regularization parameter as in other TV based methods [9,
20, 32]. In Section 4, the simulation results and some denoising
examples, are presented.

2. EPIGRAPH OF A CONVEX COST FUNCTION

Let f : RN → R be a convex cost function. We increase the dimen-
sion by one to define the epigraph set of f in RN+1 as follows:

Cf = {w = [wT y]T : y ≥ f(w)}, (1)

which is the set of N + 1 dimensional vectors, whose (N + 1)st

component y is greater than f(w). We use bold face letters for N
dimensional vectors and underlined bold face letters for N + 1 di-
mensional vectors, respectively. Another set that is related with the
cost function f(w) is the level set:

Cs = {w = [wT y]T : y ≤ 0, w ∈ RN+1}, (2)

where it is assumed that f(w) ≥ 0 for all f(w) ∈ R. Both Cf and
Cs are closed and convex sets in RN+1. Other closed and convex
sets describing a feature of the desired solution can be also used in
this approach. Sets Cf and Cs are graphically illustrated in Fig.
1. An important component of the PESC approach is to perform an
orthogonal projection onto the epigraph set. Let w1 be an arbitrary
vector in RN+1. The projection w2 is determined by minimizing the
distance between w1 and Cf , i.e.,

w2 = arg min
w∈Cf

‖w1 −w‖2. (3)

Equation (3) is the ordinary orthogonal projection operation onto the
set Cf ∈ RN+1. In order to solve the problem in Eq. (3) we do not
need to compute the Bregman’s so-called D-projection or Bregman
projection. Projection onto the set Cs is trivial. We simply force
the last component of the N + 1 dimensional vector to zero. In
the PESC algorithm, iterates eventually oscillate between the two
nearest vectors of the sets Cs and Cf as shown in Fig. 1. As a result,
we obtain

lim
n→∞

w2n = [w∗ f(w∗)]T , (4)



Fig. 1. Two convex sets Cf and Cs corresponding to the convex cost func-
tion f . We sequentially project an initial vector w0 onto Cs and Cf to find
the global minimum, which is located at w∗ = [w∗ f(w∗)]T .

where w∗ is the N dimensional vector minimizing f(w). The proof
of Eq. (4) follows from Bregman’s POCS theorem [1]. It was gen-
eralized to non-intersection case by Gubin et. al [30]. Since the
two closed and convex sets Cs and Cf are closest to each other
at the optimal solution case, iterations oscillate between the vec-
tors [w∗ f(w∗)]T and [w∗ 0]T in RN+1 as n tends to infinity. It
is possible to increase the speed of convergence by non-orthogonal
projections [21].

If the cost function f is not convex and have more than one local
minimum then the corresponding set Cf is not convex in RN+1. In
this case iterates may converge to one of the local minima.

In current TV based denoising methods [32, 34] the following
cost function is used:

argmin
w

‖v −w‖2 + λTV(w), (5)

where v is the observed signal. The solution of this problem can be
obtained using the method in an iterative manner, by performing suc-
cessive orthogonal projections onto Cf and Cs , as discussed above.
In this case the cost function is f(w) = ‖v −w‖22 + λTV(w).
Therefore,

Cf = {w ∈ RN+1 : ‖v −w‖2 + λTV(w) ≤ y}. (6)

The denoising solutions that we obtained are very similar to the ones
found by Chambolle’s in [32] as both methods use the same cost
function. One problem in [32] is the estimation of the regularization
parameter λ. One has to determine the λ in an ad-hoc manner or by
visual inspection. In the next section, a new denoising method with
a different TV based cost function is described. The new method
does not require a regularization parameter. Concept of epigraph
is first used in signal reconstruction problems in [35, 36]. We also
independently developed epigraph based algorithms in [37].

3. DENOISING USING PESC

In this section, we present a new denoising method, based on the
epigraph set of the convex cost function. It is possible to use TV,
FV and �1 norm as the convex cost function. Let the original sig-
nal or image be worig and its noisy version be v. Suppose that the
observation model is the additive noise model:

v = worig + η, (7)

where η is the additive noise. In this approach we solve the follow-
ing problem for denoising:

w� = arg min
w∈Cf

‖v −w‖2, (8)

where v = [vT 0] and Cf is the epigraph set of TV or FV in RN+1.
The TV function, which we used for an M × M discrete image
w = [wi,j ], 0 ≤ i, j ≤ M − 1 ∈ RM×M is as follows:

TV (w) =
∑
i,j

(|wi+1,j − wi,j |+ |wi,j+1 − wi,j |). (9)

The minimization problem (8) is essentially the orthogonal projec-
tion onto the set Cf = {w ∈ RN+1 : TV (w) ≤ y}. This means
that we select the nearest vector w� on the set Cf to v. This is
graphically illustrated in Fig. 2. Let us explain the projection onto
an epigraph set of a convex cost function φ in detail. Equation (8) is
equivalent to:

w� =

[
wp

φ(wp)

]
= arg min

w∈Cf

‖
[

v
0

]
−

[
w

φ(w)

]
‖, (10)

where w� = [wT
p , φ(wp)] is the projection of (v, 0) onto the

epigraph set. The projection w� must be on the boundary of
the epigraph set. Therefore, the projection must be on the form
[wT

p , φ(wp)]. Equation (10) becomes:

w� =

[
wp

φ(wp)

]
= arg min

w∈Cf

‖v − w‖22 + φ(w)2. (11)

In the case of total variation φ(w) = TV (w). It is also possible to
use λφ(.) as a the convex cost function and Eq. 11 becomes:

w� =

[
wp

φ(wp)

]
= arg min

w∈Cf

‖v − w‖22 + λ2φ(w)2. (12)

Actually, Combettes and Pesquet and other researchers including
us used a similar convex set in denoising and other signal restoration
applications [4, 20, 34, 36]. The following convex set in RN de-
scribes all signals whose TV is bounded by an upper bound ε:

Cb = {w : TV(w) ≤ ε}. (13)

The parameter ε is a fixed upper bound on the total variation of the
signal and it has to be determined a priori in an ad-hoc manner. On
the other hand we do not specify a prescribed number on the TV
of vectors in the epigraph set approach. The upper bound on TV is
automatically determined by the orthogonal projection onto Cf from
the location of the corrupted signal as shown in Fig. 2.

In current TV based denoising methods [32, 34] the following
cost function is used:

min‖v −w‖22 + λTV(w). (14)

The solution of (14) can be obtained using the method that we dis-
cussed in Section 2. Similar to the LASSO approach [38] a major
problem with this approach is the estimation of the regularization
parameter λ. One has to determine the λ in an ad-hoc manner or by
visual inspection. It is experimentally observed that Eq. (12) pro-
duces good denoising results when λ = 1. Experimental results are
presented in Section 4. Notice that, this Cf is different from Eq. (6).
This means that we select the nearest vector w� on the set Cf to



Fig. 2. Graphical representation of the minimization of Eq. (8), using pro-
jections onto the supporting hyperplanes of Cf . In this problem the sets Cs

and Cf intersect because TV (w) = 0 for w = [0, 0, ..., 0]T or for a con-
stant vector.

v0. This is graphically illustrated in Fig. 2. During this orthogonal
projection operations, we do not require any parameter adjustment
as in [32].

Implementation: The projection operation described in Eq. (8)
can not be obtained in one step when the cost function is TV. The
solution is determined by performing successive orthogonal projec-
tions onto supporting hyperplanes of the epigraph set Cf . In the first
step, TV(v0) and the surface normal at v1 = [vT

0 TV(v0)] in RN+1

are calculated. In this way, the equation of the supporting hyperplane
at v1 is obtained. The vector v0 = [vT

0 0] is projected onto this hy-
perplane and w0 is obtained as our first estimate as shown in Fig. 2.
In the second step, w0 is projected onto the setCs by simply making
its last component zero. The TV of this vector and the surface nor-
mal, and the supporting hyperplane is calculated as in the previous
step. We calculate the distance between v0 and wi at each step of
the iterative algorithm described in the previous paragraph. The dis-
tance ‖v0 −wi‖

2 does not always decrease for high i values. This
happens around the optimal denoising solution w?. Once we detect
an increase in ‖v0 −wi‖

2, we perform a refinement step to obtain
the final solution of the denoising problem. In refinement step, the
supporting hyperplane at

v2i+1+v2i+3

2
is used in the next iteration.

For instance, when v2 is projected, the distance is increased, there-
fore, in i = 0 in Fig. 2, instead of v3, vector v5 will be used in
next step. Next, v4 is projected onto the new supporting hyperplane,
and w2 is obtained. In Fig. 2, by projecting the w2 onto Cf , the
vector w3 is obtained which is very close to the denoising solution
w?. In general iterations continue until ‖wi −wi−1‖ ≤ ε, where
ε is a prescribed number, or iterations can be stopped after a certain
number of iterations. A typical convergence graph is shown in Fig.
3 for the “note” image. It is possible to obtain a smoother version of
w? by simply projecting v inside the set Cf instead of the boundary
of Cf .

4. SIMULATION RESULTS

The PESC algorithm is tested with a wide range of images. Let us
start with the “Note” image shown in Fig. 6(a). This is corrupted
by a zero mean Gaussian noise with σ = 45 in Fig. 6(b). The im-
age is restored using PESC, SURE-LET [39], and Chambolle’s al-
gorithm [32] and the denoised images are shown in Fig. 6(c), 6(d),
and 6(e), with SNR values equal to 15.08, 13.20, and 11.02 dB, re-
spectively. SURE-LET and Chambolle’s algorithm produce some

Fig. 3. Euclidian distance from v to the epigraph of TV at each iteration
(‖v −wi‖) with noise standard deviation of σ = 30.

patches of gray pixels at the background. The regularization pa-
rameter λ in Eq. (14) is manually adjusted to get the best possible
results for each image and each noise type and level in [32], and
SURE-LET require the knowledge about noises standard deviation
in [39]. Moreover, Structural Similarity Index (SSIM) is also cal-
culated as in [40] for all methods. PESC algorithm not only pro-
duces higher SNR and SSIM values than other methods, but also
provides visually better looking image. The same experiments are
also done over “cancer cell” image, which the results are presented
in Fig. 6. Denoising results for other noise levels are presented in
Table 1. We also tested the PESC algorithm against ε-contaminated
Gaussian noise (salt-and-pepper noise) with the PDF of

f(x) = εφ(
x

σ1
) + (1− ε)φ( x

σ2
), (15)

where φ(x) is the standard Gaussian distribution with mean zero and
unit standard deviation. The results of the tests are presented in Table
3. The performance of the reconstruction is measured using the SNR
criterion, which is defined as follows

SNR = 20× log10(
‖worig‖

‖worig − wrec‖
), (16)

where worig is the original signal and wrec is the reconstructed sig-
nal. All the SNR values in Tables are in dB.

Fig. 4. NRMSE vs. iteration number for denoising the “Note” image with
Gaussian noise with standard deviation of σ = 30.

It is also possible to use Normalized Root Mean Square Error
metric as

NRMSE(i) =
‖wi − worig‖
‖worig‖

i = 1, ..., N, (17)

which N is the number of the iterations, in [20] to illustrate the con-
vergence of the PESC based denoising algorithm. As shown in Fig.
4, NRMSE value decreases as the iterations proceeds while denois-
ing the “Note” image corrupted with Gaussian noise (σ = 25). For



(a) Original (b) Noisy (c) PESC

(d) Chambolle’s algo. (e) SURE-LET

Fig. 5. (a) A portion of original “Note” image, (b) image corrupted with
Gaussian noise with σ = 45, denoised images, using: (c) PESC; SNR =
15.08 dB and SSIM = 0.1984, (d) Chambolle’s algorithm; SNR = 13.20 dB
and SSIM = 0.1815, (e) SURE-LET; SNR = 11.02 dB and SSIM = 0.1606.
Chambolle’s algorithm and SURE-LET produce some patches of gray pixels
at the background.

(a) Original (b) Noisy (c) PESC

(d) Chambolle’s algo. (e) SURE-LET

Fig. 6. (a) Original “Cancer cell” image, (b) image corrupted with Gaussian
noise with σ = 20, denoised image, using: (c) PESC; SNR = 32.31 dB and
SSIM = 0.5182, (d) Chambolle’s algorithm; SNR = 31.18 dB and SSIM =
0.3978, (e) SURE-LET algorithm; SNR = 31.23 dB and SSIM = 0.4374.

the same image another convergence metric called Normalized Total
Variation, which is defined in [20] as NTV(i) = TV (wi)

TV (worig)
, also

converges to 1 in almost 100 iterations. In Table 2, denoising re-
sults for 34 images including 10 well-known test images from image
processing literature and 24 images from Kodak Database [41], with
different noise levels are presented. In almost all cases PESC method
produces higher SNR and SSIM results than [32, 39].

Table 1. Comparison of the results for denoising algorithms with Gaussian
noise for “note” image.

Noise σ Input PESC Chambolle [32] SURE-LET [39]

SNR SSIM SNR SSIM SNR SSIM SNR SSIM
5 21.12 0.2201 30.63 0.2367 29.48 0.2326 27.42 0.2212

10 15.12 0.2037 25.93 0.2290 24.89 0.2213 22.20 0.2086
15 11.56 0.1917 22.91 0.2216 21.76 0.2141 19.13 0.1999
20 9.06 0.1825 20.93 0.2165 19.55 0.2065 16.95 0.1867
25 7.14 0.1716 19.27 0.2111 17.73 0.2006 15.34 0.1810
30 5.59 0.1636 17.89 0.2102 16.43 0.1950 13.93 0.1767
35 4.21 0.1565 16.68 0.2073 15.23 0.1903 12.87 0.1706
40 3.07 0.0.1488 15.90 0.2030 14.07 0.1855 11.77 0.1645
45 2.05 0.1407 15.08 0.1984 13.20 0.1815 11.02 0.1606
50 1.12 0.1332 14.25 0.1909 12.19 0.1766 10.17 0.1862

Average 8.00 0.1712 19.95 0.2107 18.45 0.2004 16.08 0.1862

Table 2. Comparison of the results for denoising algorithms under Gaussian
noise with standard deviations of σ.

Images σ Input SNR PESC Chambolle [32] SURE-LET [39]

House 30 13.85 27.60 27.13 27.38
House 50 9.45 24.61 24.36 24.59
Lena 30 12.95 23.85 23.54 23.92
Lena 50 8.50 21.68 21.37 21.38

Mandrill 30 13.04 19.98 19.64 20.56
Mandrill 50 8.61 17.94 17.92 18.22

Living room 30 12.65 21.33 20.88 21.29
Living room 50 8.20 19.34 19.05 19.19

Lake 30 13.44 22.19 21.86 22.23
Lake 50 8.97 20.26 19.90 20.07

Jet plane 30 15.57 26.31 25.91 26.49
Jet plane 50 11.33 24.07 23.54 24.10
Peppers 30 12.65 24.24 23.59 23.78
Peppers 50 8.20 22.05 21.36 21.82
Pirate 30 12.13 21.43 21.30 21.27
Pirate 50 7.71 19.58 19.43 19.32

Cameraman 30 12.97 24.20 23.67 24.58
Cameraman 50 8.55 21.80 21.22 22.06

Flower 30 11.84 21.97 20.89 17.20
Flower 50 7.42 19.00 18.88 13.21

24-Kodak(ave.) 30 11.92 21.05 20.80 20.92

24-Kodak(ave.) 50 7.48 18.97 18.58 18.88

Average±std 30 12.27±1.66 23.12±2.35 22.66±2.34 22.70±2.91
Average±std 50 7.84±1.67 20.85±2.17 20.26±3.13 20.51±2.07

Table 3. Comparison of the results for denoising algorithms for ε-
Contaminated Gaussian noise for “note” image

ε σ1 σ2 Input SNR PESC Chambolle [32] SURE-LET [39]

0.9 5 30 14.64 23.44 22.26 16.11
0.9 5 40 12.55 21.39 20.32 13.65
0.9 5 50 10.75 19.49 18.63 11.64
0.9 5 60 9.29 17.61 17.37 10.25
0.9 5 70 7.98 16.01 16.24 8.91
0.9 5 80 6.89 14.54 14.97 7.88

0.9 10 30 12.56 22.88 21.71 17.06
0.9 10 40 11.13 21.00 19.97 14.26
0.9 10 50 9.85 19.35 18.46 12.20
0.9 10 60 8.58 17.87 17.10 10.69
0.9 10 70 7.52 16.38 16.03 9.18
0.9 10 80 6.46 15.05 15.12 8.14

0.95 5 30 16.75 24.52 23.78 19.12
0.95 5 40 14.98 22.59 21.54 16.62
0.95 5 50 13.41 20.54 19.91 14.62
0.95 5 60 12.10 18.72 18.63 13.11
0.95 5 70 10.80 17.13 17.50 11.71
0.95 5 80 9.76 15.63 16.38 10.54

0.95 10 30 13.68 23.79 22.62 19.34
0.95 10 40 12.66 22.09 21.12 17.06
0.95 10 50 11.71 20.65 19.60 15.16
0.95 10 60 10.72 19.10 18.30 13.40
0.95 10 70 9.82 17.59 17.22 12.11
0.95 10 80 8.92 16.12 16.45 10.91

5. CONCLUSION

A new denoising method based on the epigraph of the TV function is
developed. Epigraph sets of other convex cost functions can be also
used in the new denoising approach. The denoised signal is obtained
by making an orthogonal projection onto the epigraph set from the
corrupted signal in RN+1. The new algorithm does not need the
optimization of the regularization parameter as in standard TV de-
noising methods. Experimental results indicate that better SNR and
SSIM results are obtained compared to standard TV based denois-
ing in a large range of images. The proposed method can be in-
corporated into the so called 3-D denoising methods [42]. In 3-D
denoising methods similar image blocks are grouped and shrinked
according to the noise level. Since our method does not need the
noise variation, it will lead to more flexible 3-D methods.
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